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Starting from a microscopic theory, we derive a master equation for a harmonic oscillator coupled to a bath
of noninteracting oscillators. We follow a nonperturbative approach, proposed earlier by us for the free Brown-
ian particle. The diffusion constants are calculated analytically and the positivity of the master equation is
shown to hold above a critical temperature. We compare the long time behavior of the average kinetic and
potential energies with known thermodynamic results. In the limit of vanishing oscillator frequency of the
system, we recover the results of the free Brownian particle.
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I. INTRODUCTION

The issue of quantum dissipation has been a long standing
and important problem and has been studied in the context of
a variety of phenomena, including relaxation phenomena
�1,2�, quantum cosmological models �3,4�, and in more re-
cent times, in the context of cold atoms �5�. In contrast to the
classical dissipative phenomenon, the quantum analog has a
number of additional constraints, which on the one hand
make the problem much more complex and on the other
hand make it more interesting. Of these, the first and the
foremost constraint is that of the noncommutative nature of
the canonical variables, which leads to stringent conditions
on the fluctuation of the canonical coordinates, which is
commonly known as the Heisenberg uncertainty relation.
The second major difference between the classical and quan-
tum dissipative dynamics is the fact that the autocorrelation
function of the fluctuating force has a memory effect �6�,
which depends on the temperature and the Planck constant �.
Thus, while the force autocorrelation becomes delta-
correlated �Markovian� at high temperatures or for �→0,
leading to recovery of classical results, the correlation can
have a power law dependence on time at very low tempera-
tures �7�. Hence, a consistent theory has to extrapolate be-
tween these two extreme regimes. Another major issue of the
quantum dissipative system is the positivity of the density
matrix during the nonequilibrium dynamics of the system.
The positivity is necessary for the evolution of the system
through physical states.

Several models have been proposed to model the classical
and quantum dissipative dynamics �8–14�. A formal treat-
ment of the system plus bath model was introduced by Feyn-
man and Vernon �15�, who derived the influence functional
for the effective action of the system, by integrating out the
bath degrees of freedom, using the path integral technique.
This method was later used by Caldeira and Leggett �16� to
derive the high temperature behavior of the master equation
for a quantum harmonic oscillator coupled to a bath of har-
monic oscillators. Dekker �17� proposed a phenomenological
master equation where there can be diffusion not only in the
position space but also in the momentum space. Valsakumar
and Dekker �18� showed that the various diffusion constants
must obey a certain criterion in order to satisfy the positivity
condition as shown by Lindblad �19,20�. In the weak cou-

pling limit, Agarwal �21� derived some exact results for a
dissipative harmonic oscillator. Hu et al. �22� did an exact
treatment of the same problem and found that the diffusion
constants are time dependent. In all the previous approaches,
one of the crucial assumptions was that the system and bath
are initially decoupled and they get coupled at time t=0.
Hakim and Ambegaokar �23� showed that the results would
be dramatically different if this assumption was not true and
that the initial transients can play a crucial role in the evolu-
tion of the density matrix. This was extended further by oth-
ers �14,24,25�. There have been some attempts to derive the
master equation, phenomenologically, within Lindblad form
�26,27�.

In this paper, we derive the master equation of a quantum
harmonic oscillator, coupled to a heat bath, within a scheme,
proposed earlier by us �28�. Unlike some of the earlier ap-
proaches �16,29�, where the high temperature expansion was
used to convert the nonlocal memory kernel to a local one,
we retain the original expression for the memory kernel and
Taylor expand the nonlocal terms in the local time scheme.
Our results are valid above a certain critical temperature
which depends on the oscillator frequency and the damping
constant. The paper is organized as follows. In Sec. II, we
formulate the problem of the harmonic oscillator and show
how one can derive the master equation following our
scheme. In Sec. III, we calculate the diffusion constants and
remark on their behavior at high temperatures. We also cal-
culate the limit in which the positivity condition breaks
down. In Sec. IV, we recover the free particle results exactly
in the limit of vanishing oscillator frequency. We conclude in
Sec. V.

II. DERIVATION OF THE MASTER EQUATION FOR THE
HARMONIC OSCILLATOR COUPLED TO A HEAT

BATH

We start with a microscopic model for a harmonic oscil-
lator, which is linearly coupled to a bath of oscillators. The
total Hamiltonian H of the system consists of three parts,
viz., the Hamiltonian for the system HA, the Hamiltonian for
the bath HB, and the interaction Hamiltonian HI, which de-
scribes the linear coupling of the system to the heat bath. The
three parts of the total Hamiltonian H are defined as
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p2

2M
+

1

2
M�0

2q2, �1a�

HB = �
i
� Pi

2

2mi
+

1

2
mi�i

2Qi
2� , �1b�

HI = − q�
i

CiQi + q2�
i

1

2

Ci
2

mi�i
2 , �1c�

where q and p are the position and momentum coordinates of
the system, with mass M and oscillator frequency �0, and Qi
and Pi are the coordinates of the bath oscillators, with mass
mi and the frequency �i. The coupling constant between the
system and the ith bath oscillators is denoted by Ci.

In order to derive a master equation of the reduced density
matrix, we use the Feynman-Vernon �15� procedure to cal-
culate the effective action after integrating out the bath de-
grees of freedom. We assume that at t=0 both the system and
the bath are uncorrelated with each other, so that we can
write the total initial density matrix of the whole system as
the direct product of the initial density matrices of the system
and the bath, respectively. Following the work of Feynman
and Vernon �15�, the time evolution of the density matrix is
given in terms of the influence functional as

��q1,q2,t� =� dq1�dq2�J�q1,q2,t;q1�,q2�,0���q1�,q2�,0� , �2�

where the quantity J�q1 ,q2 , t ;q1� ,q2� ,0� propagates the den-
sity matrix ��q1� ,q2� ,0� from an initial time to the density
matrix ��q1 ,q2 , t� at final time and is given by

J�q1,q2,t;q1�,q2�,0� =� � Dq1Dq2 exp� ı

�
Seff�q1,q2�� .

�3�

Integrating out the bath degrees of freedom, we obtain the
nonlocal effective action for the system �16�, given by

ı

�
Seff =

ı

�
�SA�q1� − SA�q2�� + �

0

t

��R + �I�d� , �4�

where SA corresponds to the action of system corresponding
to Eq. �1a� and

�R = −
1

�
�

0

�

�q−����R�� − s�q−�s��ds , �5a�

�I = −
ı

�
�

0

�

�q−����I�� − s�q+�s��ds , �5b�

where we define q�=q1�q2 and the respective memory ker-
nels are given by the relations

�R��� = �
i

Ci
2

2m�i
coth� ��i

2kBT
�cos��i�� , �6a�

�I��� = − �
i

Ci
2

2m�i
sin��i�� . �6b�

The summations in Eq. �6� can be replaced by integrals by
defining a density of states F��� of the bath oscillators. The
density of states is defined using the Drude form of the cutoff
�1� as

F��� = �c
2/��2 + �c

2� �7�

and

F���C2���/�2m�2� = �2M	/
���c
2/��2 + �c

2�� . �8�

The memory kernels can now be evaluated as

�R��� = M	�c
2	cot���exp�− �c�� +

2

�
�
n=1

�
n
/�

�n
/��2 − 1

exp�− �n
/���c��
 , �9�

where �=��c /2kBT. The above expression shows clearly
that the system has two distinct time scales, one given by
1 /�c and the other by � /kBT. We now proceed to use our
scheme of using a Taylor series expansion, as was done in an
earlier work �28�,

q��s� = �
l=0

�
q�

�l����
l!

�s − ��l, �10�

where q�l� is the lth derivative of the position coordinates of
the system with respect to time. Inserting Eqs. �9� and �10�
into Eq. �5� and neglecting the total derivative terms, we
obtain

�R��� = −
1

�
�
l=0

�
�− 1�l

2l!
�q−

�l�����2�
0

�

�̃2l�R��̃�d�̃ . �11�

For ��� /kBT, neglecting the transient terms, we obtain

�R��� = −
M	�c

��
	q−

2��� − 2�
l=1

�

�q−
�l��2


�− 1�l

�c
2l �

m=0

l � �



�2m

��2m�
 , �12�

where � is the Riemann zeta function, and

�I��� = −
ı	M

�
q−���q+��� , �13�

where the higher order terms in �I are neglected as they fall
off as 1 /�c. Note here that while Eqs. �12� and �13� are local
in nature, the nonlocality is implicitly present due to the
infinite summation and the presence of all higher order de-
rivatives of the dynamical variables. We now proceed to find
a systematic replacement for the higher order derivatives. In
order to do this we resort to the dynamical equations of mo-
tion. The dynamical equation of motion for the harmonic
oscillator can be written as
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Q̇ = MQ , �14�

where

Q = �q

q̇
� ,

M = � 0 1/M
− M�0

2 − 2	/M � . �15�

The higher order derivatives of the position variable q can be
formally obtained from the relation

Q�l+1� = MlQ . �16�

Using the eigenvalues and eigenfunctions of the matrix M
and performing a similarity transformation, the higher order
derivatives of the position variable can be written as

q�l� =
��2�1

l − �1�2
l �

��2 − �1�
q +

��2
l − �1

l �
��2 − �1�

q̇ , �17�

where

�1,2 = − 	 � �	2 − �0
2 �18�

are the eigenvalues of the matrix M. It is interesting to note
that all the higher order derivatives can be written in terms of
the canonical coordinates at time t. Inserting Eq. �17� into
Eq. �12� gives

�R��� =
− 2kBT	M

�2 ��q−
2��� + ��q̇−

2���� , �19�

where

� = 1 + � �1�2
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�2� 1
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2
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�
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�1

2

�c
2

− 1��
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2
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�c
�

1 +
���1�2�2

�c
2

− 1�
+

1

�2
2�

�2�

�c
coth��2�

�c
�

1 +
�2

2

�c
2

− 1�� �20�

and

�� =
1

��2 − �1�2�
�1�

�c
coth��1�

�c
�

1 +
�1

2

�c
2

− 1��
− 2

��1�2�

�c
coth���1�2�

�c
�

1 +
���1�2�2

�c
2

− 1�
+ �

�2�

�c
coth��2�

�c
�

1 +
�2

2

�c
2

− 1�� . �21�

In the limit of �c→�, � and �� are given by

� = 1 + � �1�2

�2 − �1
�2� 1

�1
2	 ��1

2kBT
coth� ��1

2kBT
� − 1
�

−
2

�1�2
	���1�2

2kBT
coth����1�2

2kBT
� − 1


+
1

�2
2�	 ��2

2kBT
coth� ��2

2kBT
� − 1
� �22�

and

�� = � 1

�2 − �1
�2�	 ��1

2kBT
coth� ��1

2kBT
� − 1


− 2	���1�2

2kBT
coth����1�2

2kBT
� − 1


+ �	 ��2

2kBT
coth� ��2

2kBT
� − 1
�� . �23�

Thus the effective action is given by

ı

�
Seff =

ı

�
�

0

t

d�	M

2
q̇+q̇− −

M�0
2

2
q+q− − 	Mq−q̇+


−
2kBT	M

�2 �
0

t

d���q−
2 + ��q̇−

2� . �24�

It is worth noting that using our scheme of summing the
memory effects over the classical paths, we have converted
the nonlocal action into a local effective action. This is the
central result of this paper.

Once the effective action in a local form has been ob-
tained, viz., Eq. �24�, we follow the prescription given by
Caldeira and Leggett �16� to derive the master equation. We
calculate the change in the reduced density matrix, within a
small time interval �, using the functional integral method.
Collecting the terms which are of the order of � and neglect-
ing higher order terms, we obtain the master equation, de-
scribing the time evolution of the density matrix ��x ,y , t� in
the following form:
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��

�t
=

i�

2M
	 �2�

�x2 −
�2�

�y2
 −
ı

�

M�0
2

2
�x2 − y2�� − 	�x − y�

	 ��

�x
−

��

�y

 +

2i

�
Dpq�x − y�	 ��

�x
+

��

�y



+ Dqq� �

�x
+

�

�y
�2

� −
Dpp

�2 �x − y�2� , �25�

where the diffusion constants are given by

Dpq = 4kBT	2��, �26a�

Dqq =
2kBT	��

M
, �26b�

Dpp = 2kBTM	�� + 4	2��� . �26c�

The above form of the master equation is different from
the one obtained by Caldeira and Leggett �16� due to the fact
that our effective action has an extra term depending on q̇2. It
is relevant to note that the form of the master equation,
which we have obtained from a microscopic model, is simi-
lar to that obtained by Dekker �17� from a phenomenological
point of view. However, the functional forms of the diffusion
constants are different from those proposed by Dekker.
Moreover, Dekker’s results were valid for the weak coupling
regime, whereas our results are more general in nature and
are valid for strong coupling also.

III. DISCUSSIONS OF RESULTS

In this section, we examine the behavior of the diffusion
constants with respect to temperature, as well as on the
damping and the oscillator frequency. There are two dimen-
sionless parameters in this problem, viz., 	 /�0 and kBT /��0.
The cutoff frequency �c is considered to be much larger than
any of the other scales in the problem. In terms of the di-
mensionless parameter 	 /�0 there are two regimes: �1� the
overdamped regime �	 /�0�1� and the underdamped regime
�	 /�0�1�, which show oscillatory behavior. At high tem-
peratures, the diffusion constants are the same for both the
regimes and are given by

Dpp = 2kBTM	�1 +
�2	2

3kB
2T2� , �27a�

Dqq =
�2	

6MkBT
, �27b�

Dpq =
�2	2

3kBT
. �27c�

The high temperature behavior is completely independent of
the oscillator frequency up to the order of 1 /T. In the high
temperature limit, the classical diffusive behavior is recov-
ered, with the well known diffusion constant, Dpp
=2M	kBT, and the other diffusion constants Dqq and Dpq
vanish as 1 /T.

The two central issues in the problem of quantum Brown-
ian motion as discussed earlier are �1� the Heisenberg uncer-
tainty principle and �2� the positivity of the density matrix
during the time evolution. Valsakumar and Dekker �18� ad-
dressed the first issue and showed that the diffusion constants
have to satisfy a certain condition, known as the positivity
condition, in order to maintain the uncertainty relation. The
second issue has been addressed by Lindblad �19� from a
more mathematical approach, where a general form of the
master equation was proposed, in order to maintain the posi-
tivity of the density matrix for all times. Interestingly, if the
first condition is satisfied, then it automatically guarantees
the Dekker equation in a Lindblad form �20�. In terms of the
diffusion constants the Valsakumar-Dekker positivity condi-
tion is given by �18�

� = DppDqq − Dpq
2 − �2	2/4 � 0. �28�

At high temperatures, although the diffusion constants Dqq
and Dpq vanish as 1 /T, they are crucial for restoring the
positivity condition and � approaches a constant value
�2	2 /12. Using Eq. �26� in Eq. �28�, we find that the posi-
tivity condition is only satisfied above a breakdown tempera-
ture Tc which depends on 	 /�0.

In Fig. 1 we plot the dimensionless quantity kBTc /�	 as a
function of the dimensionless parameter �0 /	. For small �0,
this critical temperature is of the order of 0.4�	 /kB, which
agrees with the results for the free particle �28�.

From the master equation �Eq. �25��, one can also derive
the average kinetic and potential energies as the system ap-
proaches equilibrium �18�. The time derivative of the aver-
age values q2, p2, and qp+ pq can be calculated as

d

dt
�q2� =

1

M
�qp + pq� + 2Dqq, �29a�

d

dt
�p2� = − M�0

2�qp + pq� − 4	�p2� + 2Dpp, �29b�

0 1 2 3 4
ω0/γ

0

0.5

1

1.5

k B
T

c/h-
γ

FIG. 1. The breakdown temperature Tc as a function of the
dimensionless parameter �0 /	.
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d

dt
�qp + pq� =

2

M
�p2� − 2M�0

2�q2� − 2	�qp + pq� − 4Dpq.

�29c�

The solutions of the above coupled equation can then be
obtained as

�q2� =
�Dpp − 4M	Dpq + M2�4	2 + �0

2�Dqq�
2M2	�0

2 − A1
e−2	t

2M	

− A2
	�	 + ��e−2�	−��t

2M	�0
2 − A3

	�	 − ��e−2�	+��t

2M	�0
2 ,

�30a�

�p2� =
�Dpp + M2�0

2Dqq�
2	

− A1
M�0

2

2	
e−2	t

− A2
M

2	
e−2�	−��t	�	 − �� − A3

M

2	
e−2�	+��t	�	 + �� ,

�30b�

�qp + pq� = − 2MDqq + A1e−2	t + A2e−2�	−��t + A3e−2�	+��t,

�30c�

where Ai’s are the constants of integration, which depend on
the initial values of the average quantities, viz., �q2�0, �p2�0,
and �qp+ pq�0, and �=�	2−�0

2. For finite oscillator fre-
quency �0, the �p2� and �q2� are given by

�p2� =
�Dpp + M2�0

2Dqq�
2	

, �31a�

�q2� =
�Dpp − 4M	Dpq + M2�4	2 + �0

2�Dqq�
2M2	�0

2 . �31b�

It is interesting to note that if Dqq is taken to be 0, then the
master equation given by Eq. �25� along with Eq. �31�
matches exactly with the approximate master equation �Eq.
115� given in �25�, which was previously derived in �30�.
The master equations given in �25,30� are similar to those
given in �22�. However, while the diffusion constants in �22�
are time dependent, the diffusion constants in �25,30� are
time independent and do not satisfy the positivity condition
�Eq. �28�� since Dqq=0. Although we do not get time-
dependent diffusion constants, we obtain a nonzero Dqq,
which vanishes at high temperatures but restores the positiv-
ity condition.

The average kinetic and potential energies can be ob-
tained from Eq. �31�.

At high temperatures, the average values of both kinetic
energy �p2� /2M and potential energy M�0

2�q2� /2 approach to
1
2kBT, which is in agreement with the equipartition theorem.
Thermodynamic quantities of the system can also be calcu-
lated from the partition function, which can be evaluated by
the well known technique of imaginary time path integral
method �1,14�. Above the critical temperature �below which
the positivity condition is violated�, equilibrium values of
�p2� and �q2� obtained from the master equation are in good

agreement with those obtained from the partition function
method as shown in Figs. 2 and 3 in both the overdamped
and the underdamped regimes.

IV. REVISITING THE FREE PARTICLE: THE LIMIT OF
VANISHING OSCILLATOR FREQUENCY

It is obvious from Hamiltonian �1� that, if we take
�0→0, we would end up with the system of a free particle
connected to a heat bath. This problem was discussed in
detail by us in an earlier paper �28�. We will present here the
relevant results for the diffusion constants and the averages
of q2 and p2 from the earlier paper. The diffusion constants
are given by �28�

Dqq =
2kBT	�0�

M
, �32a�

Dpq = 4	2kBT�0�, �32b�

Dpp = 2kBTM	�1 + 4	2�0�� , �32c�

where

1 2 3 4
kBT/ h-ω0

0.0

0.5

1.0

1.5

2.0

M
ω

0<q
2 >/

2
h-

1 2 3 4
kBT/ h-ω0

Dynamical Route
Thermodynamic Route

(a) (b)

FIG. 2. The average potential energy as a function of the tem-
perature for �a� 	 /�0=0.01 �underdamped� and �b� 	 /�0=2 �over-
damped�. The solid line is obtained from Eq. �31� and the circles
denote the thermodynamic result taken from �1�.

1 2 3 4
kBT/ h-ω0

0

0.5

1

1.5

2

<p
2 >/

2M
h- ω

0

Dynamic Route
Thermodynamic Route

1 2 3 4
kBT/ h-ω0

(a) (b)

FIG. 3. The average kinetic energy as a function of the tempera-
ture for �a� 	 /�0=0.01 �underdamped� and �b� 	 /�0=2 �over-
damped�. The solid line is obtained from Eq. �31� and the circles
denote the thermodynamic result taken from �1�.
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�0� =

�	

kBT
coth� �	

kBT
� − 1

4	2 , �33�

and the corresponding averages for q2 and p2 are given by

�p2� =
Dpp

2	
= M�	 coth� �	

kBT
� �34�

and

�q2� �
Dpp + 4M2	2Dqq − 4M	Dpq

2M2	2 t =
kBT

M	
t . �35�

From Eq. �26�, putting �0→0 we find that we can recover
Eq. �32� because in this limit �→1 and ��→�0�. However, it
is puzzling to note that Eq. �35� cannot be recovered from
Eq. �31b� by taking the limit of �0→0. In order to recover
the well known diffusive behavior of the free particle, we
must consider the system as it approaches equilibrium, viz.,
Eq. �30�, instead of the equilibrium values given by Eq. �31�.
In Eq. �30�, as �0→0, one of the exponents �	−�� which
sets the relaxation time vanishes. Thus, we expand this term
as a power series, i.e., exp�−2�	−��t��1+ ��0

2 /2	�t
+O��0

4�. This term comes with the integration constant A2,
which can be calculated as

A2 =
�Dpp� + �2m2	3 − 2m2	�0

2 + 2m2	2� − m2��0
2�Dqq − 2mDpq��2 + 	���

2m�3

+
��p2�0��2 − 	�� − �x2�0m2�0

2��2 + 	�� − �qp + pq�0m�0
2��

2m�3 . �36�

Inserting the power series expansion and the value of A2
from Eq. �36�, in Eq. �30�, we recover Eqs. �34� and �35�
exactly in the limit of �0→0. It is clear that the equilibrium
properties of a particle in a harmonic oscillator have an extra
degree of freedom. In order to recover the free particle re-
sults, the asymptotic limit of the dynamical variables must be
taken after taking the limit of �0→0. Interchanging the order
of taking the limits leads to wrong thermodynamic results,
e.g., the total energy turns out to be equal to kBT at high
temperatures instead of the free particle result of �1 /2�kBT.

V. CONCLUSIONS

We have considered a microscopic model of a particle in
a harmonic well, connected to a bath of oscillators and de-
rived a master equation for the reduced density matrix of the

system. We have calculated the diffusion constants in both
the overdamped and the underdamped regimes and examined
the positivity conditions for the reduced density matrix. The
positivity condition is not satisfied below a breakdown tem-
perature Tc, which depends on the dimensionless parameter
�0 /	. This is not very unexpected since we neglected the
transients for t�� /kBT. In the high temperature limit, we
find that the diffusion constants become independent of the
oscillator frequency �up to O�1 /T��. The kinetic and poten-
tial energies obtained from the steady state solutions are in
good agreement with the thermodynamic results. We have
also recovered the free particle results in the limit of vanish-
ing oscillator frequency. To recover the correct diffusive be-
havior of the free particle, it is important to consider the
approach to equilibrium rather than the asymptotic equilib-
rium values.
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